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Abstract—Conjugate mixed convection heat transfer along a vertical plate fin embedded in a saturated
high-porosity porous medium has been studied. A local non-similarity solution, up to the third level of
truncation, has been obtained for convective flow in the porous medium. The effects of solid boundary
and inertia forces which have been neglected in the Darcy flow model were taken into account. Results
were obtained for Pr = 7, 20, 50, and other parameters in the range of 0 < Q < 2.0 and 0 < Nee < 2.0.
For pure forced convection and low Nce (nearly isothermal), the error resulting from omitting the boundary
and inertia forces decreases with increasing downstream distance. For mixed convection flow the effects of
boundary and inertia on local heat transfer coefficient and local heat flux become very significant at large
values of Ncc, especially downstream.

INTRODUCTION

CoNVECTIVE heat transfer in a porous medium has
attracted considerable interest in recent years due to
its numerous applications in industrial and geo-
physical problems. Excellent review articles are pro-
vided by Cheng [1, 2]. Most of the existing studies
have been based on Darcy’s law [3], which neglects
the boundary and inertia effects on fluid flow and heat
transfer.

The boundary effects are usually small for packed
spheres since permeability is small. However, for cer-
tain solid materials, such as foametals fibrous media
[4], where the permeability and porosity are high, the
boundary effect cannot be neglected.

The inertia effects, though not important in low-
porosity porous media, are shown to be very sig-
nificant in high-porosity porous media [4]. The inertia
effects also become important at high-speed flows in
a porous medium.

In mechanical engineering, the subject probably
becomes of greater importance with the use of porous
materials of high porosity which have the form of a
latticework of metallic or non-metallic fibers [4] where
the boundary and inertia effects become more sig-
nificant. The effects of boundary and inertia on heat
transfer for constant high-porosity porous media were
examined by Vafai and Tien [5] for forced convection,
and by Ranganathan and Viskanta [6] for mixed con-
vection. Results of their analyses have shown that
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both boundary and inertia effects decrease the velocity
in the thermal boundary layer, broaden the tem-
perature distribution, and reduce the heat transfer
rates.

Most of the previous studies for heat transfer prob-
lems in porous media have been based on some
assumed temperature distributions along the imper-
meable surface, and thus the solid—fluid interactions
were neglected. Sparrow and Acharya [7], Sparrow
and Chyu [8] and Sunden [9] concluded that, although
the conventional fin theory model based on the pre-
scribed uniform heat transfer coefficient gives a good
estimate of the overall heat transfer rate from the fin,
substantial errors could arise in the prediction of the
local heat transfer rate. The conjugate mixed con-
vection—conduction heat transfer problem for a plate
fin embedded vertically in a saturated porous medium
has recently been analyzed by Liu ez al. [10], using
Darcy’s law, where both solid boundary and inertia
forces were neglected.

The present investigation analyzes the effects of
boundary and inertia forces on conjugate mixed con-
vection-conduction heat transfer in a high-porosity
porous medium. The local volume-averaging tech-
nique [5] is applied to the fundamental flow and
energy equations in a porous medium. Both boundary
and inertia effects are included in the equations. Since
the developing region of the boundary layer for almost
all practical cases is very small [5], the convective
effects are neglected. The porous medium under study
here is assumed to be made up of a latticework of
metallic fibers, which is referred to as foametal [4].
The value of F (a function used to express inertia
terms) which depends on permeability, geometry, and
Reynolds number based on the square root of per-
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0Glo¢
local heat transfer coefficient
h* dimensionless local heat transfer
coefficient, [4(x)L]/(k\/Re)
average heat transfer coefficient, defined
in equation (60)
h* dimensionless average heat transfer
coefficient, AL/k./Re

=

K permeability of porous structure

k equivalent thermal conductivity of the
porous medium

k. fin thermal conductivity

L fin length

Nee  convection—conduction parameter,

defined in equation (17)

Pe Peclet number, (1 L)/a

Pr Prandtl number, v;/a

0 total heat transfer rate, defined in
equation (64)

Q*  dimensionless total heat transfer rate,
Q/lk(T, — T..)/ Re)

q local heat flux

q* dimensionless local heat flux,
(qL)/(Ty~T.)/Re]

Re Reynolds number, (u,,L)/v;

T temperature )

T, fin base temperature

T, fin temperature

u velocity in x-direction

NOMENCLATURE

Da  Darcy number, K/L? v velocity in y-direction
F function used to express inertia term, X streamwise coordinate

defined in equation (1) y transverse coordinate.
f dimensionless stream function defined in

eque‘mon (¥2a) . . . Greek symbols
G auxiliary dimensionless velocity function, . o o

o effective thermal diffusivity
Gr gfr/féhof mber, [gBK(T,— T,)[}jv? B¢ coefficient of thermal expansion of fluid
Sho’ nu 2 19Pe ™ Lo f 8 plate fin half thickness

g gravitational acceleration . orosity of the medium
H auxiliary dimensionless velocity function, f p ¥

n pseudosimilarity variable, defined by
equation (11b)
ne  fin efficiency, defined in equation (68)

[ dimensionless temperature,
(TG ) =T (T —Ty)
g, dimensionless fin temperature,

(T.(x) = T (T~ Tx)
A inertia parameter, Re Fe./Da

U dynamic viscosity of fluid
vy kinematic viscosity of fluid
14 transformed streamwise coordinate,

defined by equation (11a)
P density of fluid

¢ auxiliary dimensionless temperature
function, 06/6¢

X auxiliary dimensionless temperature
function, d¢/d¢

v stream function, defined by equation
(12a)

Q buoyancy force parameter, Gr/Re.

Subscripts

b condition at the fin base

f quantities associated with the fluid

] quantities associated with the fin

w condition at the wall

o0 condition at infinity

n differentiation with respect to n

& differentiation with respect to £.

meability is taken as 0.07 [4]. Boundary layer approxi-
mations similar to those invoked by Wooding [11]
and McNabb [12] are applicable. Numerical solutions
have been obtained by the local non-similarity
approximation [13, 14] and the results are compared
with those of the Darcy flow model [10].

ANALYSIS

Consider a plate fin of length L and thickness 24,
which is placed vertically downward in a saturated
porous medium as shown in Fig. 1. The x and y
denote, respectively, the streamwise and the transverse
coordinates ; and u and v are the velocities in the x-

and y-directions. The temperature of the medium far
away from the plate is T,, while the fin base tem-
perature is maintained at a constant temperature Ty,
and T, > T,. Under the assumptions that the porous
medium is in local thermal equilibrium, the properties
of the fluid and the porous matrix are constant, iso-
tropic and homogeneous, and the boundary layer and
Boussinesq approximation are also applicable, the
governing equations for the flow field become

Ur °y peFe; (5l//>2_ He aj + go:Bs

K ady &

(T_ Too)

Bl
+ K =0 (1)
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Fi1G. 1. Schematic diagram of the vertical plate fin.
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Gyox dxay - %oy 2
where the stream function y is defined as
o o
u= oy p= = (3a,b)

Fis a function used to express the inertia term; K is
the permeability of the porous structure ; and & is the
porosity of the medium.

The boundary conditions are

W _o. W_

aﬁy—o; =U;

7x T=T,x) at y =0.

(4a—)
The free stream velocity near the edge of the boundary
layer can be obtained from equation (1) by neglecting
the viscous and buoyancy terms and solving for dy/dy.
Thus

W _
6y_u

[— 1+ +4uerf\/K/vf)] _

2u,, Feoy/ K/ vy ’

T=T, at y—> . (5a,b)

If the fin is considered to be relatively long com-
pared with its thickness, a one-dimensional model for
the fin temperature distribution can be assumed. In
addition, the amount of heat which passes from the
tip of the fin to the fluid is assumed to be negligible.
Under these assumptions, the fin conservation equa-
tion and boundary conditions are

d’T, hx)

dxz = 'kské(Ts_Too) (6)
47,
i 0 at x=0 @)

T{x)=T, at x=1L. ®)

At the fluid-solid interface, y = 0 (i.e. at the surface
of the fin), it is required that the local temperature
T,(x) and the local heat flux ¢ be the same in the fluid
and the solid. Thus

T(,y) = T,9) at y=0 )
—k%}nn=hunnur4;]aty=a (10)

Equations (1) and (2) do not admit similarity solu-
tions. The non-similarities arise from the temperature
distribution of the fin and the buoyancy force. To
solve this problem by the local non-similarity method,
¢ and 7 coordinates are defined as

=i (55

In addition, dimensionless stream function and tem-
perature variables are introduced as follows:

Y(x,y) = J(@ux) f(En);

(11a,b)

T(x’y) - Too

0En = =527

(12a,b)
where the dependence of f and 6 with respect to ¢ is
weak.

Substitution of equations (11) and (12) into equa-
tions (1) and (2) leads to

PeDad’f (Y _of

E?ET“QQ‘%+?+“°(m
0%0 foe ofe0  af a0
aﬂia—(a&‘ﬁ% 9

where Da = K/L?, Pe=u_Lfa, Q= Gr/Re, Gr=
gBK(T,— T,)L/V?, Re = u,,L/v;, and A = Re Fen/Da.
The boundary conditions are

o o Vo 4 -

—6;—-0, é‘éz'}-’z‘—o, 0—9w atr,~0 (ISa—C)
o —1+J0+40)
%_T’ =0 atr]—roo

(16a,b)

The transformed fin conservation equation and
boundary conditions are

d26,
4@ = h*(&) Nec 84(8) an
de,
@ ©=0 ate=o (18)
(=1 at =1 (19)

where A*(¢) = h(x)L/k./Re and Ncc = (kLjk5)./Re.
The transformed interfacial conditions are

0, =045 atn=0 20
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h*(8)/¢6,()
\/Pr

dé
d—ﬂ(é,n) = at n=0 (21)
where Pr = v/a.

To obtain a solution to the problem, equations
(13)-(16) must be solved simultaneously with equa-

tions (17)—(21).

Local non-similarity solution

The local non-similarity method [13] will now be
applied to equations (13)—(16) to obtain a set of ordi-
nary differential equations.

For the first level of truncation we neglect the terms
involving 9f /0¢ and 60/d& in equations (14) and (15b).
With these approximations, equations (13)—(16) can
be rewritten as

f;mw+Plffrm = Qlf (22)
0,,+ P10, = Qo (23)
where
Qb
Py=0; Qy= P/ lfal:(/\fn'H)fn 4—1]
(24a,b)
Pa=L: Qu=0.  @sap)

Here, the first subscript on P and Q in equations
(22) and (23) represents the truncation level while the
second subscript denotes the dependent variable of
the particular equation.

The boundary conditions are

S=0; f=0; 06=0, at n=0 (26a<)
-1 14-4A
j’,,:—d}’%_*_——); =0 at n-o oo.

(27a,b)

For the second level of truncation, the governing
equations for f and 0 are retained without approxi-
mation by introducing df/0f = G and 06/0& = ¢.
Equations (13)—(16) are differentiated with respect to
& and after neglecting the terms involving 0G/é¢ and
00/0¢ give auxiliary equations for G and ¢ with appro-
priate boundary conditions. Thus, for the second level
of truncation

Jomt Popfon =0y (28)
0,,+ Py, = O 29)
G+ PGy = Qa6 (30)
Syt Pagby = 02 31)
where
Py=0; Qy=—t : [(Af,,+1)f,,—~ —1]
(32a,b)
Py =3(f+26G); Qup= & (33a,b)

U. S. GiLL and W. J. MINKOWYCZ

Py=0; Q= [é(ZAf,,+1)G
Q Qo
+ AN+ - 09 -— = 1] (34a,b)
& &
Pay = 3(f+2£G);
01 = [(£,+¢G,)9p—3GO,] (35a,b)
with boundary conditions
f — 0. éG f — B —_
n =V, +E—0, 6—05 atn:O
(36a—<)
e AV
S = A ; =0 atpy—-oo
(37a,b)
00,
G,=0;, G=0; ¢= o at n=0 (38a—¢)
G=0; ¢=0 at n-c0. (39a,b)

For the third level of truncation, all terms involving
0G/0¢ and d¢/0E which have been neglected in the
second level truncation are restored. Additional sub-
sidiary equations and boundary conditions are
obtained by differentiating all the second level equa-
tions (without approximations) with respect to ¢ and
neglecting terms involving H/0¢ and dy/0¢. Thus the
equations for the third level of truncation become

Som+ Pypfon = Qy (40)

0+ Py, = Qs 41)
G+ P3Gy = Q36 (42)

byt Pisd, = O3, (43)
H+PypH,, = Qsn 44

A+ Poxdy = @3y (45)

where
H= 2—?; x= Z?

Qf
Py=0; Qy= gr £ [(/\fﬁl)fn—*—l]

(46a,b)
Py = }(/+266); Qy=¢ff  (4Tab)
Pio=0; Q= pop- [C(2Aj€,+l)G,,
+(Af"+1)ﬁ,—@—g‘9—1] (48a,b)
& &
Py =YS+2E6); Qs = [(f,+G)
—(G+EH)0,+E1) (49ab)
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Pyy=0;

Q= 5o { EQAS,+ 1) H,

L Ll

Q
+RACG,+2f) +26,— (&x+ 2¢)} (50a,b)
f

Py, = 3(f+28G); Qs = [2(f,+EG)x
—~(3G+2tH)¢,+(2G,+EH)$—3HO). (51ab)
The boundary conditions are
—o: f o o= _
fi=0; CG+5=0; =6, at n=0
(52a—<)
_ Ay
.]r] - 2A ) =V ’7 .
(53a,b)
00,
G,=0;, (H+3G=0; ¢= a2 atn=20
(54a—)
G,=0; ¢=0 atn—o0 (55a,b)
GRCA
H,=0; H=0 x=5€—2 at n =0 (56a—c)
H,=0; x=0 atn-oo. (57a,b)

RESULTS AND DISCUSSION

The heat conduction equation for the fin and the
local non-similarity equations for the flow field can
be converted into an integral form and numerical
solutions can be obtained by iteration. The details of
the procedure are described in ref. [10). Computations
were carried out up to the third level of truncation.

The numerical results presenteu in the uguu:b are
all for typical high, uniform-porosity (g = 0.98)
porous media and constant permeability (K = 10~¢
m?). The typical Reynolds number, Re = u,L/v; is
taken as 49 700 for the following values of physical
quantities: for water at Pr = 7.0, v,= 1.006 x 10~°
m?s™', L = 1.0 m and u, = 0.05 m s~"'. The buoy-
ancy force parameter Q and conjugate convection—

Man am e seos dmm o ae ars rnmciderad

uuuuuuuuu pdalallicicl AV(,L alc bUllbiuClCU UCLWCCII
the ranges of 0-0.2. To study the effects of Prandil
numbers, results are also obtained for Pr = 20 and
50.

Fin temperature distributions
The effects of boundary and inertia on fin tem-
perature distributions are shown in Fig. 2 and com-

marad with tha ragulte of tha Narcy Aaw madel 101
parca wilnl ine ré8uiis 01 uil rarcy ndw moad: j1vj.

The fin temperature variations decrease due to the
boundary and inertia effects. The fin temperature dis-
tributions are also functions of Ncc and €. They all
show the expected trend whereby the fin temperature
distributions decrease monotonically from the fin base
to the tip. Everything else remaining fixed, the effect
of increasing Ncc implies a poorly conducting wall
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arcy Flow Model = Liu et al [10]
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T U i T
00 02 04 08 08 10
3

F1G. 2. Fin temperature disiributions.

across which a greater temperature drop occurs. The
larger values of Q give rise to greater fin wall tem-
perature variations. This is because the buoyancy
force assists the flow and thus increases the convective

hant tramafae wagirlite s awer tammarats

1
1vatl Lialinicl lcauluus lll IUWLL Wellipel atures.

Local heat transfer coefficients
The local heat transfer coefficients can be deter-
mined at every position £ from the expression

é_T
oy

h(x) = TTo-T. (58)
or in dimensionless form
h L /P -0, —o

kRe - JE 0.0

The distributions of local heat transfer coefficients
with conjugate effect are presented in Fig. 3. It can be
scen that the boundary and inertia forces reduce the
local heat transfer coefficients. For Q = 0 (pure forced
convection) at low Nec (nearly isothermal), the error
resulting from omitting the boundary and inertia force
decreases with increasing downstream distance. How-
ever, for mixed convection flow at large Nec, the error
is much higher, especially downstream.

The present analysis also reveals that for forced

tha haat tranaefar coafficiant tando to

convaction ‘
tn€ ncat wansier <odncitnt twenas (o

decrease monotonically from an infinite value at the
tip to some value at the fin base for all values of Nec.
For mixed convection flows at low Ncc (Nee = 0.2),
the distributions of local heat transfer coefficients
closely approximate those for an isothermal fin, where
they decrease monotonically from the tip to the base,
with the variations being relatively rapid near the
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10.0
Pr=7
Re = 49700
[ Darcy Flow Model - Liu et al {10]
i —— With both Boundary & Inertie Effects
Nee=20
o)
&
=
<
-
=

T
0.0 02 0.4 06 08 1.0

FiG. 3. Local heat transfer coefficients.

tip and more gradual near the base. At higher Nec,
there is an initial drop in the heat transfer coefficient
which becomes more and more gradual with increas-
ing &, and ultimately leads to a minimum after which
it increases steadily with £. At higher Nec, the location
of the minimum also shifts towards the tip, and the
extent of the downstream rise becomes greater.

Average heat transfer coefficients

The average heat transfer coefficient can be
obtained by integrating the local heat transfer
coefficient over the fin surface and dividing by the fin
length. It can be expressed in both dimensional and
non-dimensional forms as

1t

k= i.[) h(x)dx (60)
AL
i = /R (61)

Figure 4 shows the effects of boundary and inertia
on the average heat transfer coefficients as a function
of Ncc. The boundary effect decreases the average heat
transfer coefficient and becomes more pronounced at
higher Ncc. The inertia effect also decreases the aver-
age heat transfer coefficient. The average heat transfer
coefficient also increases as ) increases and Ncc
increases. This is due to the fact that larger values of
the local heat transfer coefficient prevail in most of
the fin length for larger Nec.

Figure 5 shows the effects of Prandtl numbers on
average heat transfer coefficients as a function of
buoyancy force. The average heat transfer coeflicients
are higher for high Prandt] number fluids. As Ncc is
increased, the influence of Pr becomes more pro-
nounced.
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6.0

Pr=7

0=2.0 . Re = 43700
=
-

45

hL/(k~/Re)
5

With Boundary Effect Only
- — With Inertis Effect Only
——- With both Boundary & Inertia Effects

00 , , - —
00 04 08 12 16 20

Ncc
FiG. 4. Average heat transfer coefficients.

6.0
Re = 48700
)
<
=
3
1=
For Pr = 50
== For Pr = 20
For Pr= 7
Both Boundary & Inertia Effects inciuded
10 U T T T
0.0 04 0.8 12 1.6 2.0
Nce
Fi1G. 5. Effects of Prandtl numbers of average heat transfer
coefficients.
Local heat fluxes

The local heat flux can be computed from

oT
q(x) = —kl}a; (X,,V)]FU (62)
and in dimensionless form from
L P
pe=—19E P g . @)

k(T,—T,)\JRe /&

The influence of boundary and inertia forces on
local heat flux variations at the solid—fluid interface is
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9.0
Pr =7
Re = 49700
------- Darcy Flow Model - Liu et al [10]
= With both Boundary & Inertia Effects
6.0

Ncc=2.0

qL/k(T,-T. VRe]

FIG. 6. Local heat fluxes

plotted in Fig. 6 as a function of Q. The figure shows
that the boundary and inertia effects reduce the heat
transfer and these effects become more significant at
higher buoyancy forces and Nce, especially down-
stream. In the figure, for mixed convection flows, it
can be seen that as Q increases, local heat flux increases
over the major part of the surface. Small values of
Ncce yield high values of heat flux near the tip and
lower values near the root. This finding stands in
contrast to the conventional perception that the high-
est rates of convective heat transfer always occur
adjacent to the root. As Ncc increases, the heat flux
first decreases, reaches a minimum and then starts to
increase. At high Nce, most of the heat transfer takes

9.0
Pr=7
Re = 48700
------ Darcy Flow Model - Liu et al [10]
G seess With Boundary Effect Only
7.04 — = With Inertia Effect Only

—— With both Boundary & inertia Effects

O/[K(T,~T..VRe]

T L

0.0 04 08 12 18 2.0
Ncc

FI1G. 7. Total heat transfer rates.
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place near the fin base. This is due to the strong
buoyancy force near the fin base. However, in the
vicinity of the leading edge, the influence of the buoy-
ancy force is very small. For high Ncc, the temperature
close to the leading edge is small, and thus, the buoy-
ancy force has little effect.

Total heat transfer rates

The total heat transfer rate can be obtained from
the solutions either by integrating the local heat flux
at the fin surface or from the heat conducted from the
base surface at ¢ = 1 to the fin. Thus

Q= 2'[1 g(x)dx (64)
or
AT,
Q= 2k55|: o (x)l_ ; (65)

In dimensionless forms, these become

Q

O =T T.)JRe
: [_0»7(6”7)]"=0}
2/P e V=0 e (66
v rf{ e & (66)
or
. 0 2 [de,
e"= k(T,—T,)J/Re Ncc[df (é)]5= v €

Total heat transfer rates solved by the two methods
are found to be in good agreement. In Fig. 7, it is
shown that the total heat transfer rates decrease due
to the inertia effect. The inertia effect becomes more
important at higher Q. The boundary effect also
results in a smaller total heat transfer rate. Both
boundary and inertia effects on total heat transfer
rates are more significant at lower Ncc. The total heat
transfer rate increases as buoyancy force increases.

Figure 8 shows the combined influence of the
Prandtl number and Ncc on total heat transfer rates.
The figure shows that for fixed values of Ncc and Q,
the higher Pr result in large heat transfer rates.

Fin efficiencies

The fin efficiency is defined as the ratio of the totat
heat transfer rate of the fin to the heat transfer rate
of an isothermal fin, or

A
o [Q*]Ncc=0 '

The combined influence of buoyancy force and the
convection—conduction parameter on fin efficiency is
provided in Fig. 9. With increasing values of Ncc and
Q, the fin efficiency is decreased. This result is similar
to that in ref. [9] for a classical fluid. It should also be
noted that the heat transfer from the corresponding
isothermal fin is not the same for flows with and
without boundary and inertia forces. Thus the smaller

(68)
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9.0

Re = 49700

----- For Pr = 50
R —.— For Pr=20
N —— For Pr= 7

Q/[k(T,-T.VRe)

(1=1.0
(=0.0
10 Both Boundary & Inertia Effects included
g T T T T
0.0 04 08 12 16 20
Nce

Fi16. 8. Effects of Prandtl numbers on total heat transfer
rates.

Pr =7
Re = 49700

Nett

... Darcy Flow Model - Liu et al [10]
----- With Boundary Effect Only

—-=— With Inertia Effect Only

—— With both Boundary & inertia Effects

0.3 T T T T
0.0 04 08 12 1.6 2.0

Ncc

0.4

Fi1G. 9. Fin efficiencies.

values of 7.+ does not mean that the heat transfer rate
is also small.

In Fig. 10, the combined effect of the Prandtl num-
ber and the convection—conduction parameter on the
fin efficiency is provided. With increasing values of
Nce and Pr, the fin efficiency is decreased. The influ-
ence of Pr on fin efficiency becomes larger as Nec is
increased.

CONCLUSION

The purpose of this analysis is to improve the
Darcy flow model by including boundary and inertia

U. S. GiLL and W. J. MINKOWYCZ

1.0

Re = 49700

Mett

------ For Pr = 50
—— For Pr =20
—— ForPr=7

Both Boundary & Inertia Effects included

0.2  — T T T

0.0 0.4 0.8 12 16 20
Ncc

FiG. 10. Effects of Prandtl numbers on fin efficiencies.

effects in the governing equations. When these effects
are included, the heat transfer coefficients and heat
transfer rates are further decreased. Although the
boundary layer thickness is usually small, neglecting
the boundary effect might lead to a considerable error
in the computation of heat transfer rate. For forced
convection and low Ncc, the error in the heat transfer
coefficient from omitting these effects decreases with
increasing downstream distance. For mixed con-
vection at higher Ncc, the error becomes much larger
especially downstream. The boundary and inertia
forces have significant effects on local heat flux for
higher Q and Ncc.
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EFFETS DE LIMITE ET D’INERTIE SUR LA CONVECTION THERMIQUE MIXTE
CONJUGUEE POUR UNE AILETTE PLANE VERTICALE DANS UN MILIEU A FORTE
POROSITE

Résumé—On étudie la convection thermique mixte, conjuguée le long d’une ailette plane verticale noyée
dans un milieu poreux a forte porosité. Une solution Jocale non-similaire, jusqu’au troisiéme niveau de
troncature, est obtenue pour I’écoulement convectif dans un milieu poreux. Les effets de frontiére solide
et de force d’inertie qui sont négligés dans le modéle d’écoulement de Darcy sont pris en compte. Des
résultats sont obtenus pour Pr =7, 20, 50; 0.0 < Q < 2.0 et 0.0 < Nee < 2.0. Pour la convection forcée
pure et un faible Necc (proche de I'isothermicité), 'erreur résultant de I'omission de limite et d’inertie
diminue quand la distance en aval augmente. Pour ’écoulement de convection mixte, les effets de limite et
d’inertie sur le coefficient de transfert thermique et le flux thermique locaux devient important aux grandes
valeurs de Ncc, particuliérement en aval.

RAND- UND TRAGHEITSEFFEKTE BEI MISCHKONVEKTION AN EINER
VERTIKALEN RIPPE IN EINEM HOCHPOROSEN STOFF

Zusammenfassung—Der Wirmeiibergang bei Mischkonvektion an einer vertikalen Rippe in einem gesit-
tigten hochpordsen Medium wurde untersucht. Es wurde eine 6rtliche Nicht-Ahnlichkeitsldsung bis zur
dritten Ordnung fiir die Konvektionsstromung im pordsen Medium ermittelt. Die Einfliisse der festen
Berandung und die Trigheitseffekte, die beim Strémungsmodell von Darcy vernachldssigt wurden, sind
hier beriicksichtigt. Es liegen Ergebnisse fiir Pr = 7; 20; 50 im Bereich 0,0 < Q < 2,0 und 0,0 € Nee € 2,0
vor. Bei reiner erzwungener Konvektion und kleinem Nec (d. h. fast isothermen Bedingungen) verringert
sich stromabwarts der Fehler, der sich durch die Vernachldssigung der Rand- und Tragheitskrifte ergibt.
Bei Mischkonvektion werden die Einfliisse des Randes und der Trigheit auf den lokalen Wir-
meiibergangskoeffizienten und die lokale Wirmestromdichte bei groBen Werten von Nece, besonders
stromabwairts, sehr bedeutsam.

BJTUSTHUE FPAHUL] 1 UHEPLIMOHHBIX CUJI HA COINPSIKEHHBIH TEIUIONEPEHOC OT
BEPTUKAJIBHOI'O TUTOCKOTI O PEBPA B BLICOKOIIOPUCTO CPEJIE TPH
CMEIIAHHOY KOHBEKLIUHA

Annorauns—H3yyeH conpskeHHBIH TEMIONEPEHOC BOOJIb BEPTHKAILHOTO IJIOCKOro pebpa, morpyxes-
HOTO B HACBHIEHHYIO BBICOKONOPHCTYIO Cpeny, NpH CMeEINaHHOH KOHBeKIMH. 18 KOHBEKTHBHOIO
TeYeHHs B MOPHCTOH cpele MOJy4E€HO JIOKAIBHOE HEaBTOMOJEIBHOE PELIEHHE C TOYHOCTBIO OO WIEHOB
TPETHETO NMOPSAJKA MAJIOCTH. YYHTHIBANIOBL BIHSHHE TBEPAOH IPaHHIb H HHEPUHOHHBIX CHJl, KOTOPBIMH
npenebperator B monenu Japcu. Ilonyyensl pesynbrarsl ains Pr = 7, 20, 50 u ans Apyrux napaMeTpos B
nuanasone 0,0 < Q < 2,0 m 0,0 < Nee < 2,0. [Ins 9HCTO BBIHYXKICHHON KOHBEKIIMH M HU3KHX Ncc (moutu
M30TEPMHYECKOE TeYeHHe) OLIHOKA, BLI3BAHHAS HEYHETOM IDAHMIl M HHEPLUHOHHBIX CIJI, YMEHBIIAETCS C
YBEJIHYEHHEM PacCTOAHMA BHH3 MO MOTOKY. [l CMEIIaHHOM KOHBEKUMH BJIMSAHHE rPAHHUI] U MHEPUHOH-
HBbIX CHJI Ha JIOKQJIbHBI TEIUIONEPEHOC CTAHOBHTCA CyLIeCTBEHHbIM NpH Gonplunx 3HayeHusx Ncc, 0CO-
6eHHO BHH3 10 MOTOKY.



