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Abstract-Conjugate mixed convection heat transfer along a vertical plate fin embedded in a saturated 
high-porosity porous medium has been studied. A local non-similarity solution, up to the third level of 
truncation, has been obtained for convective flow in the porous medium. The effects of solid boundary 
and inertia forces which have been neglected in the Darcy flow model were taken into account. Results 
were obtained for Pr = 7, 20, 50, and other parameters in the range of 0 < R < 2.0 and 0 < Ncc < 2.0. 
For pure forced convection and low Ncc (nearly isothermal), the error resulting from omitting the boundary 
and inertia forces decreases with increasing downstream distance. For mixed convection flow the effects of 
boundary and inertia on local heat transfer coefficient and local heat flux become very significant at large 

values of Ncc, especially downstream. 

INTRODUCTION 

CONVECTIVE heat transfer in a porous medium has 
attracted considerable interest in recent years due to 
its numerous applications in industrial and geo- 
physical problems. Excellent review articles are pro- 
vided by Cheng [1, 21. Most of the existing studies 
have been based on Darcy’s law [3], which neglects 
the boundary and inertia effects on fluid flow and heat 
transfer. 

The boundary effects are usually small for packed 
spheres since permeability is small. However, for cer- 
tain solid materials, such as foametals fibrous media 
[4], where the permeability and porosity are high, the 
boundary effect cannot be neglected. 

The inertia effects, though not important in low- 
porosity porous media, are shown to be very sig- 
nificant in high-porosity porous media [4]. The inertia 
effects also become important at high-speed flows in 
a porous medium. 

In mechanical engineering, the subject probably 
becomes of greater importance with the use of porous 
materials of high porosity which have the form of a 
latticework of metallic or non-metallic fibers [4] where 
the boundary and inertia effects become more sig- 
nificant. The effects of boundary and inertia on heat 
transfer for constant high-porosity porous media were 
examined by Vafai and Tien [5] for forced convection, 
and by Ranganathan and Viskanta [6] for mixed con- 
vection. Results of their analyses have shown that 
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both boundary and inertia effects decrease the velocity 
in the thermal boundary layer, broaden the tem- 
perature distribution, and reduce the heat transfer 
rates. 

Most of the previous studies for heat transfer prob- 
lems in porous media have been based on some 
assumed temperature distributions along the imper- 
meable surface, and thus the solid-fluid interactions 
were neglected. Sparrow and Acharya [7], Sparrow 
and Chyu [8] and Sunden [9] concluded that, although 
the conventional fin theory model based on the pre- 
scribed uniform heat transfer coefficient gives a good 
estimate of the overall heat transfer rate from the fin, 
substantial errors could arise in the prediction of the 
local heat transfer rate. The conjugate mixed con- 
vection-conduction heat transfer problem for a plate 
fin embedded vertically in a saturated porous medium 
has recently been analyzed by Liu et al. [lo], using 
Darcy’s law, where both solid boundary and inertia 
forces were neglected. 

The present investigation analyzes the effects of 
boundary and inertia forces on conjugate mixed con- 
vection-conduction heat transfer in a high-porosity 
porous medium. The local volume-averaging tech- 
nique [5] is applied to the fundamental flow and 
energy equations in a porous medium. Both boundary 
and inertia effects are included in the equations. Since 
the developing region of the boundary layer for almost 
all practical cases is very small [5], the convective 
effects are neglected. The porous medium under study 
here is assumed to be made up of a latticework of 
metallic fibers, which is referred to as foametal [4]. 
The value of F (a function used to express inertia 
terms) which depends on permeability, geometry, and 
Reynolds number based on the square root of per- 
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NOMENCLATURE 

Darcy number, K/L* V velocity in Y-direction 

function used to express inertia term, X streamwise coordinate 

defined in equation (1) Y transverse coordinate. 

dimensionless stream function defined in 
equation (12a) 
auxiliary dimensionless velocity function, 

af ial 
Grashof number, [g/I&( Tb - T,) L]/$ 
gravitational acceleration 
auxiliary dimensionless velocity function, 

ac/ar 
local heat transfer coefficient 
dimensionless local heat transfer 

coefficient, [h(x)L]/(k,/Re) 
average heat transfer coefficient, defined 
in equation (60) 
dimensionless average heat transfer 
coefficient, t?LJkJRe 
permeability of porous structure 
equivalent thermal conductivity of the 
porous medium 
fin thermal conductivity 
fin length 
convection-conduction parameter, 
defined in equation (17) 
Peclet number, (u,L)/cc 
Prandtl number, Q/CC 
total heat transfer rate, defined in 

equation (64) 
dimensionless total heat transfer rate, 

Q/[Vb - T&R4 
local heat flux 
dimensionless local heat flux, 

tqL)ltk(Tr,- T,)JRel 
Reynolds number, (u,L)/v, 
temperature 
fin base temperature 

fin temperature 
velocity in x-direction 

Greek symbols 

;r 

effective thermal diffusivity 
coefficient of thermal expansion of fluid 

6 plate fin half thickness 

Ef porosity of the medium 

rl pseudosimilarity variable, defined by 
equation (11 b) 

rletr fin efficiency, defined in equation (68) 
i3 dimensionless temperature, 

L%Y) - TmII(T,- Tm) 
8, dimensionless fin temperature, 

[K(x) - TJ(T, - T,) 
A inertia parameter, Re Fc,JDa 

Pf dynamic viscosity of fluid 

VF kinematic viscosity of fluid 

4 transformed streamwise coordinate, 
defined by equation (11 a) 

Pr density of fluid 

4 auxiliary dimensionless temperature 
function, aelag 

x auxiliary dimensionless temperature 
function, a4jag 

dJ stream function, defined by equation 

(12a) 
n buoyancy force parameter, Gr/Re. 

Subscripts 
b condition at the fin base 
f quantities associated with the fluid 
S quantities associated with the fin 
W condition at the wall 
00 condition at infinity 

? differentiation with respect to 1 

r differentiation with respect to 5. 

meability is taken as 0.07 [4]. Boundary layer approxi- 

mations similar to those invoked by Wooding [1 1] 
and McNabb [ 121 are applicable. Numerical solutions 
have been obtained by the local non-similarity 
approximation [13, 141 and the results are compared 
with those of the Darcy flow model [lo]. 

ANALYSIS 

Consider a plate fin of length L and thickness 26, 
which is placed vertically downward in a saturated 
porous medium as shown in Fig. 1. The x and y 
denote, respectively, the streamwise and the transverse 
coordinates ; and u and v are the velocities in the x- 

and y-directions. The temperature of the medium far 
away from the plate is T,, while the fin base tem- 
perature is maintained at a constant temperature Tb, 
and T, > T,. Under the assumptions that the porous 
medium is in local thermal equilibrium, the properties 
of the fluid and the porous matrix are constant, iso- 
tropic and homogeneous, and the boundary layer and 
Boussinesq approximation are also applicable, the 
governing equations for the flow field become 

Pf a’$ PrFEr ati 2 
Ef ay 3 (-> JK ay 

Pf ati + 9Prh 
--U---co) 

K ay Ef 

+F=o (1) 
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Tb T,(x) = Tb at x = L. (8) 

At thetluid-solid interface, y = 0 (i.e. at the surface 

of the fin), it is required that the local temperature 
T,(x) and the local heat flux q be the same in the fluid 
and the solid. Thus 

Porous medium Porous medium T(x, y) = T,(x) at y = 0 (9) 

-k$(x, y) = h(x)[T,(x)- T,] at y = 0. (10) 

Equations (1) and (2) do not admit similarity solu- 
tions. The non-similarities arise from the temperature 
distribution of the fin and the buoyancy force. To 
solve this problem by the local non-similarity method, 
< and rl coordinates are defined as 

FIG. 1. Schematic diagram of the vertical plate fin. 

a*aT a*aT a2T 
-----=al ay ax ax ay ay 

where the stream function J/ is defined as 

(2) 

ati 
u=G; 

a+ 
v= -ax (30) 

F is a function used to express the inertia term ; K is 
the permeability of the porous structure ; and er is the 
porosity of the medium. 

The boundary conditions are 

a* 
dy=O; g=O; T=T,(x) at y=O. (4a-c) 

The free stream velocity near the edge of the boundary 
layer can be obtained from equation (1) by neglecting 
the viscous and buoyancy terms and solving for @lay. 
Thus 

T = T, at y + co. (5a,b) 

If the fin is considered to be relatively long com- 
pared with its thickness, a one-dimensional model for 
the fin temperature distribution can be assumed. In 
addition, the amount of heat which passes from the 
tip of the fin to the fluid is assumed to be negligible. 
Under these assumptions, the fin conservation equa- 
tion and boundary conditions are 

dT, 
-=0 atx=O 
dx 

(6) 

Ula,b) 

In addition, dimensionless stream function and tem- 
perature variables are introduced as follows : 

$(x>Y) = J<w,~)f(rt rl); 

w,d = T’:! i Tm (12a,b) 
b m 

where the dependence off and 0 with respect to 5 is 
weak. 

Substitution of equations (11) and (12) into equa- 
tions (1) and (2) leads to 

(13) 

where Da = K/L2, Pe = u,Llcc, Sl = Gr/Re, Gr = 
gbfK(Tb- T,)L/$, Re = u,L/v6 and A = Re Fc,JDa. 

The boundary conditions are 

af 
%=O; C$+g=O: e=e, at q=o (15ax) 

af -= 
-1+ J(I+~A) 

all 212 
; e=o atq-tco. 

(160) 

The transformed fin conservation equation and 
boundary conditions are 

d2B, 
p = h*(5) Ncc e,(5) 

de, 

(17) 

z(<)=O at <=O (18) 

e,(t) = 1 at 5 = 1 (19) 

where h*(r) = h(x)L/k,/Re and Ncc = (kL/k,S),/Re. 
The transformed interfacial conditions are 

e(5,q) = e,(5) at v = 0 (20) 
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- $m = ~*(OJLYs(5) 
JP’ 

at q=O (21) 

where Pr = v&x 

To obtain a solution to the problem, equations 
(13)-(16) must be solved simultaneously with equa- 
tions (17)-(21). 

Local non-similarity solution 
The local non-similarity method [ 131 will now be 

applied to equations (13)-( 16) to obtain a set of ordi- 
nary differential equations. 

For the first level of truncation we neglect the terms 
involving af /at and %?/a< in equations (14) and (15b). 
With these approximations, equations (13)-( 16) can 
be rewritten as 

where 

J;,, + P I,_& = Q I., (22) 

&,,+P,& = Q,o (23) 

Pu=O; a,,=&& (AfV+l)f,+l 1 
Wa,b) 

f 
P10 = --; 

2 
Qls = 0. (25a,b) 

Here, the first subscript on P and Q in equations 
(22) and (23) represents the truncation level while the 
second subscript denotes the dependent variable of 
the particular equation. 

The boundary conditions are 

&=O; f=O; f?=@, at n=O (26a-c) 

-1+J(l+4A) 
fv = 2A 

; 8=0 atq+co. 

V’a,b) 

For the second level of truncation, the governing 
equations for f and 8 are retained without approxi- 
mation by introducing af/lJt = G and atI@{ = 4. 
Equations (13)-( 16) are differentiated with respect to 
5 and after neglecting the terms involving aG/ag and 
atI/ag give auxiliary equations for G and 4 with appro- 
priate boundary conditions. Thus, for the second level 
of truncation 

where 

f,,, + P&,9 = Q21- 

6,,+p28eV = Qze 

G,,,+PzG,, = QX 

h,a+P244s = Q255 

(28) 

(29) 

(30) 

(31) 

P,=O; Q2,=&$ (1\1,+l)f,-$-1 1 
Wa,b) 

Pso = i(f+W); Q2@ = tX,d~ Wa,b) 

P2, = 0; Q~G = & t;('W++1)G, 

+(Afq+l)fV-F-F-l (34a,b) 1 
P,,= :(f+XG); 

QW = [(f,+ G,M -?G&l (35a,b) 

with boundary conditions 

h=O; tG+;=O; 8=0, at q=O 

(36aac) 

-1+J(1+4A) 
f,= 2h ; O=O atrj-+cc 

W&b) 

G,=O; G=O; c)=$ at n=O (38aac) 

G=O; c$J=O atq+cc. (39a,b) 

For the third level of truncation, all terms involving 
aG/ag and &#@g which have been neglected in the 
second level truncation are restored. Additional sub- 
sidiary equations and boundary conditions are 
obtained by differentiating all the second level equa- 
tions (without approximations) with respect to r and 
neglecting terms involving &Y/at and ax/a& Thus the 
equations for the third level of truncation become 

&ts+J'd,v, = Q, (40) 

%, + PM&, = Q 30 (41) 

G,,,+p~Gqq = Q3G (42) 

&,+P& = Q,, (43) 

K,,, + PsH%, = Q 3~ (44) 

xq,, + P,,xs = Qs, (45) 

where 

dG WJ H=z; x=X 

f’,=O; Qj,=z& (Af,+l)fq-7-l 1 
(460) 

Pj8 = :(f +X33; Q,= U$ (470) 

+(*f+l)f-3-ne-1 '1 'I 
Ef 6 I 

(4&b) 

P,, = t(f +XG); Q,, = [(f,+5G,h$ 

- ($G + 5fW, + C&xl (49a,b) 
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PW = 0; 

+[2A(gG,+2~)+2lC,-~(~x+2~) 
P,, = f(f+ XG) ; Qp. = Mf,+ &3,)x 

-(3G+25H)~,+(2G,+5H,)~-:Hed. 

The boundary conditions are 

f 

(500) 

(510) 

f,=O; (G+k=O; Q=fl, at r1=0 

(52a-c) 

-1+J(1+4h) 
f, = 2A 

; 0=0 atq+co. 

(530) 

G,=O; <H+$G=O; c$=$ at r]=O 
ae 

(54aac) 

G,=O; I#I=O atq-+cc (55a,b) 

H,,=O; H=O; x=$ at q=O (56a-c) 

H,,=O; x=0 at q+oo. (57a,b) 

RESULTS AND DISCUSSION 

The heat conduction equation for the fin and the 
local non-similarity equations for the flow field can 
be converted into an integral form and numerical 
solutions can be obtained by iteration. The details of 
the procedure are described in ref. [lo]. Computations 
were carried out up to the third level of truncation. 

The numerical results presented in the figures are 
all for typical high, uniform-porosity (E, = 0.98) 
porous media and constant permeability (K = lo- 6 
m’). The typical Reynolds number, Re = u,L/v, is 
taken as 49 700 for the following values of physical 
quantities: for water at Pr = 7.0, vr= 1.006x 10m6 
m2 s- ‘, L = 1.0 m and U, = 0.05 m SK’. The buoy- 
ancy force parameter Q and conjugate convection- 
conduction parameter Ncc are considered between 
the ranges of O-0.2. To study the effects of Prandtl 
numbers, results are also obtained for Pr = 20 and 
50. 

Fin temperature distributions 
The effects of boundary and inertia on fin tem- 

perature distributions are shown in Fig. 2 and com- 
pared with the results of the Darcy flow model [lo]. 
The fin temperature variations decrease due to the 
boundary and inertia effects. The fin temperature dis- 
tributions are also functions of Ncc and R. They all 
show the expected trend whereby the fin temperature 
distributions decrease monotonically from the fin base 
to the tip. Everything else remaining fixed, the effect 
of increasing Ncc implies a poorly conducting wall 

0.6 - ________ Ncc-1.0 

0.2 

0.0 0.2 0.4 0.6 0.9 0 

FIG. 2. Fin temperature distributions. 

across which a greater temperature drop occurs. The 
larger values of R give rise to greater fin wall tem- 
perature variations. This is because the buoyancy 
force assists the flow and thus increases the convective 
heat transfer resulting in lower temperatures. 

Local heat transfer coefficients 
The local heat transfer coefficients can be deter- 

mined at every position < from the expression 

h(x) = 
y=o T, (4 - Tm (58) 

or in dimensionless form 

The distributions of local heat transfer coefficients 
with conjugate effect are presented in Fig. 3. It can be 
seen that the boundary and inertia forces reduce the 
local heat transfer coefficients. For D = 0 (pure forced 
convection) at low Ncc (nearly isothermal), the error 
resulting from omitting the boundary and inertia force 
decreases with increasing downstream distance. How- 
ever, for mixed convection flow at large Ncc, the error 
is much higher, especially downstream. 

The present analysis also reveals that for forced 
convection, the heat transfer coefficient tends to 
decrease monotonically from an infinite value at the 
tip to some value at the fin base for all values of Ncc. 
For mixed convection flows at low Ncc (Ncc = 0.2), 
the distributions of local heat transfer coefficients 
closely approximate those for an isothermal fin, where 
they decrease monotonically from the tip to the base, 
with the variations being relatively rapid near the 
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FIG. 3. Local heat transfer coefficients. FIG. 4. Average heat transfer coefficients. 

Pr - 7 
Re - 49700 

Darcy Flow Model - Liu et al [lo] 
-With both Boundary & lnert~a Effects 

-c Ncc-2.0 _ _ _ _ _ _ _ _ 

tip and more gradual near the base. At higher Ncc, 
there is an initial drop in the heat transfer coefficient 
which becomes more and more gradual with increas- 
ing 5, and ultimately leads to a minimum after which 
it increases steadily with 5. At higher Ncc, the location 
of the minimum also shifts towards the tip, and the 
extent of the downstream rise becomes greater. 

Average heat transfer coeficients 
The average heat transfer coefficient can be 

obtained by integrating the local heat transfer 
coefficient over the fin surface and dividing by the fin 
length. It can be expressed in both dimensional and 
non-dimensional forms as 

Figure 4 shows the effects of boundary and inertia 
on the average heat transfer coefficients as a function 
of Ncc. The boundary effect decreases the average heat 
transfer coefficient and becomes more pronounced at 
higher Ncc. The inertia effect also decreases the aver- 
age heat transfer coefficient. The average heat transfer 
coefficient also increases as 0 increases and Ncc 
increases. This is due to the fact that larger values of 
the local heat transfer coefficient prevail in most of 
the fin length for larger Ncc. 

Figure 5 shows the effects of Prandtl numbers on 
average heat transfer coefficients as a function of 
buoyancy force. The average heat transfer coefficients 
are higher for high Prandtl number fluids. As Ncc is 
increased, the influence of Pr becomes more pro- 
nounced. 

Pr - 7 ,,... 
R-2.0 \ Re - 49700 . . . . . . ..’ 

...... Darw Flow Model - Liu et al [lOI 
----- With Boundary Effect Only . _ 
-.- With Inertia Effect Only 
- With both Boundary & Inertia Effects 

2.0 

6.0 

6.0 

4.0 

Y 

1 
l.c 

3.0 

2.0 

1.0 

,’ 

- ,’ 

I’ 

/ 

/ 

/ 

-r 
0.1 

- For Pr - 7 

Both Boundary & Inertia Effects Included 

3 6.4 6.0 i.2 i.6 

Ncc 
0 

FIG. 5. Effects of Prandtl numbers of average heat transfer 
coefficients. 

Local heat fluxes 
The local heat flux can be computed from 

(62) 

and in dimensionless form from 

The influence of boundary and inertia forces on 
local heat flux variations at the solid-fluid interface is 
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FIG. 6. Local heat fluxes 

plotted in Fig. 6 as a function of R. The figure shows 
that the boundary and inertia effects reduce the heat 
transfer and these effects become more significant at 
higher buoyancy forces and Ncc, especially down- 
stream. In the figure, for mixed convection flows, it 
can be seen that as R increases, local heat flux increases 
over the major part of the surface. Small values of 
Ncc yield high values of heat flux near the tip and 
lower values near the root. This finding stands in 
contrast to the conventional perception that the high- 
est rates of convective heat transfer always occur 
adjacent to the root. As Ncc increases, the heat flux 
first decreases, reaches a minimum and then starts to 
increase. At high Ncc, most of the heat transfer takes 

.---- With Boundary Effect Only 
-‘- With Inertia Effect Only 

‘I - With both Boundary & Inertia Effects 

3.0 

FIG. 7. Total heat transfer rates. 

place near the fin base. This is due to the strong 
buoyancy force near the fin base. However, in the 
vicinity of the leading edge, the influence of the buoy- 
ancy force is very small. For high Ncc, the temperature 
close to the leading edge is small, and thus, the buoy- 
ancy force has little effect. 

Total heat transfer rates 
The total heat transfer rate can be obtained from 

the solutions either by integrating the local heat flux 
at the fin surface or from the heat conducted from the 
base surface at 5 = 1 to the fin. Thus 

Q = 2 :y(x)dx 
s 

or 

In dimensionless forms, these become 

(64) 

(65) 

Q*= Q 
k(T, - T,),/Re = 

or 

’ ZJPr 
S{ II 

Q*= Q 2 de’(<) 
k(T, - T,),/Re = KC [ 1 d5 

. (67) 
<= I 

Total heat transfer rates solved by the two methods 
are found to be in good agreement. In Fig. 7, it is 
shown that the total heat transfer rates decrease due 
to the inertia effect. The inertia effect becomes more 
important at higher R. The boundary effect also 
results in a smaller total heat transfer rate. Both 
boundary and inertia effects on total heat transfer 
rates are more significant at lower Ncc. The total heat 
transfer rate increases as buoyancy force increases. 

Figure 8 shows the combined influence of the 
Prandtl number and Ncc on total heat transfer rates. 
The figure shows that for fixed values of Ncc and R, 
the higher Pr result in large heat transfer rates. 

Fin ejiciencies 
The fin efficiency is defined as the ratio of the total 

heat transfer rate of the fin to the heat transfer rate 
of an isothermal fin, or 

Q* 
%tT = 

[Q*l,c=o (68) 

The combined influence of buoyancy force and the 
convection-conduction parameter on fin efficiency is 
provided in Fig. 9. With increasing values of Ncc and 
a, the fin efficiency is decreased. This result is similar 
to that in ref. [9] for a classical fluid. It should also be 
noted that the heat transfer from the corresponding 
isothermal fin is not the same for flows with and 
without boundary and inertia forces. Thus the smaller 
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----- For Pr - 60 
- - For Pr - 20 
- For Pr - 7 

Both Boundarv & Inertia Effects Included 

0 0.4 0.8 1.2 1.8 

Ncc 

FIG. 8. Effects of Prandtl numbers on total heat transfer 
rates. 

Pr - 7 
Re - 49700 

.. Oarcv Flow Model - Liu et al [lo] 
.-_-- With Boundary Effect Only 
- - With Inertia Effect Only 
- With both Boundary & Inertia Effects 

V.” / 

0.0 6.4 d.B i.2 11.6 

Ncc 

FIG. 9. Fin efficiencies. 

values of neff does not mean that the heat transfer rate 
is also small. 

In Fig. 10, the combined effect of the Prandtl num- 
ber and the convection-conduction parameter on the 
fin efficiency is provided. With increasing values of 
Ncc and Pr, the tin efficiency is decreased. The influ- 
ence of Pr on fin efficiency becomes larger as Ncc is 
increased. 

CONCLUSION 

The purpose of this analysis is to improve the 
Darcy flow model by including boundary and inertia 

0.8 

0.4 

0.2 

‘.---. For Pr - 50 
- - For Pr - 20 
- For Pr - 7 

Both Boundary & Inertia Effects Included 

0 0.4 0.B 1.2 1.6 

Ncc 
0 

FIG. 10. Effects of Prandtl numbers on fin efficiencies. 

effects in the governing equations. When these effects 
are included, the heat transfer coefficients and heat 
transfer rates are further decreased. Although the 
boundary layer thickness is usually small, neglecting 
the boundary effect might lead to a considerable error 
in the computation of heat transfer rate. For forced 
convection and low Ncc, the error in the heat transfer 

coefficient from omitting these effects decreases with 
increasing downstream distance. For mixed con- 
vection at higher Ncc, the error becomes much larger 
especially downstream. The boundary and inertia 
forces have significant effects on local heat flux for 
higher R and Ncc. 
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EFFETS DE LIMITE ET D’INERTIE SUR LA CONVECTION THERMIQUE MIXTE 
CONJUGUEE POUR UNE AILETTE PLANE VERTICALE DANS UN MILIEU A FORTE 

POROSITE 

R&sum&On &die la convection thermique mixte, conjuguee le long d’une ailette plane verticale noyte 
dans un milieu poreux a forte porosite. Une solution locale non-similaire, jusqu’au troisieme niveau de 
troncature, est obtenue pour l’ecoulement convectif dans un milieu poreux. Les effets de front&e solide 
et de force d’inertie qui sont negliges dans le modele d’koulement de Darcy sont pris en compte. Des 
resultats sont obtenus pour Pr = 7, 20, 50 ; 0.0 < a < 2.0 et 0.0 < Ncc < 2.0. Pour la convection for&e 
pure et un faible Ncc (proche de l’isothermicite), l’erreur resultant de l’omission de limite et d’inertie 
diminue quand la distance en aval augmente. Pour l’ecoulement de convection mixte, les effets de limite et 
d’inertie sur le coefficient de transfert thermique et le flux thermique locaux devient important aux grandes 

valeurs de Ncc, particulierement en aval. 

RAND- UND TRAGHEITSEFFEKTE BE1 MISCHKONVEKTION AN EINER 
VERTIKALEN RIPPE IN EINEM HOCHPOROSEN STOFF 

Zusammenfassung-Der Wlrmeiibergang bei Mischkonvektion an einer vertikalen Rippe in einem geslt- 
tigten hochporiisen Medium wurde untersucht. Es wurde eine Srtliche Nicht-Ahnlichkeitslijsung bis zur 
dritten Ordnung fiir die Konvektionsstriimung im poriisen Medium ermittelt. Die Einfliisse der festen 
Berandung und die Trlgheitseffekte, die beim Strdmungsmodell von Darcy vemachllssigt wurden, sind 
hier beriicksichtigt. Es liegen Ergebnisse fiir Pr = 7 ; 20; 50 im Bereich 0,O < O < 2,0 und 0,O < Ncc < 2,0 
vor. Bei reiner erzwungener Konvektion und kleinem Ncc (d. h. fast isothermen Bedingungen) verringert 
sich stromabwarts der Fehler, der sich durch die Vernachllssigung der Rand- und Trlgheitskrafte ergibt. 
Bei Mischkonvektion werden die Einfliisse des Randes und der Tragheit auf den lokalen Wlr- 
meiibergangskoeffizienten und die lokale Wlrmestromdichte bei groBen Werten von Ncc, besonders 

stromabwlrts, sehr bedeutsam. 

BJIHIIHHE I-PAHHH H HHEPIIHOHHMX CHJI HA COIIPXXCEHHbI8 TEl-IJIOI-IEPEHOC OT 
BEPTBKAJIbHOI-0 l-IJ-IOCKOrO PEPPA B BbICOKOIIOPHCTO~ CPEAE I-IPM 

CMEJIIAHHOfi KOHBEKUkiB 

.hlOTPrme_t’i3yWi COIlpXXeHH~ii TeIUIOlle~HOC BAOJIb BepTHKZlJIbHOrO IlJIOCKOrO pe6pa, IlO~yXCteH- 

HOrO B HaCblIIJCHH~ BblCOKOIIOpHCTyto CFAY, lIpI CMWElHHOfi KOHBeKlWi. &HI KOHBCKTHBHOrO 

TWCHHII B IIOpHCTOii QEAe IIOJIYWHO JIOKZlJIbHOe H‘2aBTOMOACJlbHOe &W.UeHHe C TOYHOCTbIO A0 WleHOB 

Tp’ZTbeI.0 IlOpKAKa MUIOCTB. Y’iHTbIBtUlOBb BJIHRHBe TBepAOii rPaHtiqbl H HHePUHOHHbIX CH,,, KOTOPhIMH 

npeHe6peraroT B MOAeJIEi &pCEi. ~OJIyWIbI Pe3yJlbTaTbI AJIK h = 7,20,50 H AJIK ApyMX IIapaMeTpOB B 

AEiUla3OHe o,o d fi < 2,0 H 0,0 < NCC < 2,0. &WI YHCTO BbIHyKCAeHIiO8 KOHBeKWiH H HH3KHX hkC (IlO’tTH 

H3OTepMHWCKOe T’ZJit?H&ie) OIUH6Ka, Bbl3BaHHZVl H‘Z,‘WTOM rpaH&ilJ N HHePQHOHHb,X CKII, ~MeHbLUWTCTcR C 

j’BUlH’I’?HHeM paCCTOSlHHK BHH3 IlO IIOTOKY. &IX CMelUaHHOii KOHBCKWH BJlHKHHe rpaHHIl A HHCPUHOH- 

HbIX CHJI Ha JIOKZ”lbHblii TellJIOlTepeHOC CTZLHOBHTCII Cj’UWCTB‘Z.HHbIM lIpa 6onbmax 3Ha’ieHHRX Ncc, OCO- 

6eHHOBHH3nOnOTOKy. 


